تعاریف:
nfriends([math]i∈{1,...,n}[/math])eachtossa[math]k[/math]−sideddie(whosevaluestakeauniformdistributionover[math]{1,...,k}[/math]).Defineeachofthe[math]n[/math]tosses′resultstobearandomvariable[math]Xi∈{1,..,k}[/math].Definetherandomvariables[math]Xmax=max(X1,...,Xn)[/math]and[math]Xmin=min(X1,...,Xn)[/math].Wewanttofind[math]E[Xmax−Xmin][/math].Forourspecificquestion,[math]n=4[/math]and[math]k=6[/math].
پاسخ ها:
E[Xmax−Xmin]=k−1−kn2[ζ(−n)−ζ(−n,k)],where[math]ζ(i)[/math]isRiemannZetaFunctionand[math]ζ(i,j)[/math]isHurwitzZetaFunction.
Forourspecificquestion,6−1−642[ζ(−4)−ζ(−4,6)]=6482261≈3.49.
استدلال:
First,wegetP(Xmax≤x)=P(X1≤x,...,Xn≤x).Assumingthateachdietossisindependentoftheothertosses,[math]P(X1≤x,...,Xn≤x)=i=1∏nP(Xi≤x)=(kx)n[/math].Then,notingthat[math]P(Xmax=x)=P(Xmax≤x)−P(Xmax≤x−1)[/math],wegettheprobabilitymassfunction[math]P(Xmax=x)=(kx)n−(kx−1)n[/math].
Similarly,wegetP(Xmin≥x)=P(X1≥x,...,Xn≥x).Againassumingtheindependenceofdietosses,[math]P(X1≥x,...,Xn≥x)=i=1∏nP(Xi≥x)=(kk−x+1)n[/math].Then,notingthat[math]P(Xmin=x)=P(Xmin≥x)−P(Xmin≥x+1)[/math],wegettheprobabilitymassfunction[math]P(Xmin=x)=(kk−x+1)n−(kk−x)n[/math].
Nowthatwehavebothrandomvariables′probabilitymassfunctions,wecansimplyuselinearityofexpectedvaluetocomputeE[Xmax]−E[Xmin]insteadof[math]E[Xmax−Xmin][/math].Bythedefinitionofexpectedvalueforadiscreterandomvariable,[math]E[Xmax]=x=1∑kxP(Xmax=x)=x=1∑kx[(kx)n−(kx−1)n][/math].Similarly,[math]E[Xmin]=x=1∑kxP(Xmin=x)=x=1∑kx[(kk−x+1)n−(kk−x)n][/math].Subtracting[math]E[Xmin][/math]from[math]E[Xmax][/math]andsimplifying,weget[math]knkn+1−kn−2x=1∑k−1xn[/math],whichsimplifiestotheexpressioninAnswer(since[math]x=1∑k−1xn=ζ(−n)−ζ(−n,k)[/math]).